Syntax-based Multi-system Machine Translation

نویسندگان

  • Matiss Rikters
  • Inguna Skadina
چکیده

This paper describes a hybrid machine translation system that explores a parser to acquire syntactic chunks of a source sentence, translates the chunks with multiple online machine translation (MT) system application program interfaces (APIs) and creates output by combining translated chunks to obtain the best possible translation. The selection of the best translation hypothesis is performed by calculating the perplexity for each translated chunk. The goal of this approach is to enhance the baseline multi-system hybrid translation (MHyT) system that uses only a language model to select best translation from translations obtained with different APIs and to improve overall English – Latvian machine translation quality over each of the individual MT APIs. The presented syntax-based multi-system translation (SyMHyT) system demonstrates an improvement in terms of BLEU and NIST scores compared to the baseline system. Improvements reach from 1.74 up to 2.54 BLEU points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Discontinuous Statistical Machine Translation with Target-Side Dependency Syntax

For several languages only potentially non-projective dependency parses are readily available. Projectivizing the parses and utilizing them in syntax-based translation systems often yields particularly bad translation results indicating that those translation models cannot properly utilize such information. We demonstrate that our system based on multi bottom-up tree transducers, which can nati...

متن کامل

R ’ s Machine Translation System for IWSLT 2009

In this paper, we describe the system and approach used by the Institute for Infocomm Research (IR) for the IWSLT 2009 spoken language translation evaluation campaign. Two kinds of machine translation systems are applied, namely, phrase-based machine translation system and syntax-based machine translation system. To test syntax-based machine translation system on spoken language translation, va...

متن کامل

I2r's machine translation system for IWSLT 2009

In this paper, we describe the system and approach used by the Institute for Infocomm Research (IR) for the IWSLT 2009 spoken language translation evaluation campaign. Two kinds of machine translation systems are applied, namely, phrase-based machine translation system and syntax-based machine translation system. To test syntax-based machine translation system on spoken language translation, va...

متن کامل

Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality

We identify problems with the Penn Treebank that render it imperfect for syntaxbased machine translation and propose methods of relabeling the syntax trees to improve translation quality. We develop a system incorporating a handful of relabeling strategies that yields a statistically significant improvement of 2.3 BLEU points over a baseline syntax-based system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016